INTRODUCTION

Behavioral level modeling constitutes design description at an abstract level. One can
visualize the circuit in terms of its key modular functions and their behavior; it can be
described at a functional level itself instead of getting bogged down with implementation
details.

OPERATIONS AND ASSIGNMENTS

The design description at the behavioral level is done through a sequence of
assignments. These are called _procedural assignments’ The procedure assignment is
characterized by the following:

e The assignment is done through the “=|"symbol (or the “<="symbol) as was the
case with the continuous assignment earlier.

e An operation is carried out and the result assigned through the “=" operator to an
operand specified on the left side of the “="sign — for example, N = ~N; Here the
content of reg Nis complemented and assigned to the reg Nitself. The assignment
is essentially an updating activity.

e The operation on the right can involve operands and operators. The operands can
be of different types — logical variables, numbers — real or integer and so on.

e All the operands are given in Tables 6.1 to 6.9. The format of using them and the
rules of precedence remain the same.

e The operands on the right side can be of the net or variable type. They can be
scalars or vectors.

e Itis necessary to maintain consistency of the operands in the operation expression
- e.g, N=m/ [Here mand / have to be same types of quantities — specifically a
reg, integer, time, real, realtime, or memory type of data — declared in advance.

e The operand to the left of the “="operator has to be of the variable (e.g., reg) type. It
has to be specifically declared accordingly. It can be a scalar, a vector, a part vector,
or a concatenated vector.

e Procedural assignments are very much like sequential statements in C. Normally
they are carried out one at a time sequentially. As soon as a specified operation on
the right is carried out, the result is assigned to the quantity on the left — for
example N=m+ L N1 = N* NThe above form a set of two procedures placed
within an always block. Generally they are carried out sequentially in the order
specified

The sequential nature of the assignments requires the operands on the left of the
assignment to be of reg (variable) type.

FUNCTIONAL BIFURCATION

Design description at the behavioral level is done in terms of procedures of two types;
one involves functional description and interlinks of functional units. It is carried out
through a series of blocks under an —always The second concerns simulation — its
starting point, steering the simulation flow, observing the process variables, and stopping
of the simulation process; all these can be carried out under the —always|| banner, an
—initial banner, or their combinations. However, each always and each initial block
initiates an activity flow during simulation In general the activity with all such blocks
starts at the simulation time and flows concurrently during the whole simulation process

A procedure-block of either type — initial or

Type of block 1s specitied here: only two types
arc possible;- inditial & always

The symbol signifies an event control (only for
always blocks)

Specifies the event which flags off the execution
of the block (only for alwa ys blocks)

Y Y
type of block @(sensitivity list)

—» begin; mame_of_block «

local variable declarations; <«

procedural assignment
statements;

—» and

All the aetivities within the block are enclosed within
the begin-end construct

The procedural statements form the body of the block —

All variables ete.. local © the block are declared at
the begnning of the block

The block can be assigned 8 name which can be
referred

begin — end Construct

If a procedural block has only one assignment to be carried out, it can be specified as
below

initial #2 a=0;
If more than one procedural assignment is to be carried out in an initial block. All such

assignments are grouped together between —begin and —end declarations. The
following are to be noted here

e Every begin declaration must have its associated end declaration.
e begin — end constructs can be nested as many times as desired.

Name of the Block
Any block can be assigned a name, but it is not mandatory. Only the blocks which are to

be identified and referred by the simulator need be named. Assigning names to blocks
serves different purposes:

e Registers declared within a block are local to it and are not available outside.
However, during simulation they can be accessed for simulation, etc., by proper
dereferencing.

Named blocks can be disabled selectively when desired

Local Variables

Variables used exclusively within a block can be declared within it. Such a variable need
not be declared outside, in the module encompassing the block. Such local declarations
conserve memory and offer other benefits too. Regs declared and used within a block are
static by nature. They retain their values at the time of leaving the block. The values are
modified only at the next entry to the block.

INITIAL CONSTRUCT
A set of procedural assignments within an initial construct are executed only once — and,
that too, at the times specified for the respective assignments The initial process is
characterized by the following
e In any assignment statement the left-hand side has to be a storage type of element
(and not a net). It can be a reg, integer, or real type of variable. The right-hand side
can be a storage type of variable (reg, integer, or real type of variable) or a net.
e All the procedural assignments appear within a begin—end block
e All the procedural assignments are executed sequentially — in the same order as
they appear in the design description. The initial block above does three controlling
activities during the simulation run.
e Initialize the selected set of reg's at the start.
e Change values of reg's at predetermined instances of time. These form the inputs
to the module(s) under test and test it for a desired test sequence.
e Stop simulation at the specified time

Multiple Initial Blocks

A module can have as many initial blocks as desired. All of them are activated at the start
of simulation. The time delays specified in one initial block are exclusive of those in any
other block.

ALWAYS CONSTRUCT
The always process signifies activities to be executed on an —always basis.| Its essential
characteristics are:

Any behavioral level design description is done using an always block.

The process has to be flagged off by an event or a change in a net or a reg.

The process can have one assignment statement or multiple assignment statements.
In the latter case all the assignments are grouped together within a —begin — end
construct.

Normally the statements are executed sequentially in the order they appear.

Event Control

The always block is executed repeatedly and endlessly. It is necessary to specify a
condition or a set of conditions, which will steer the system to the execution of the block.

Alternately such a flagging-off can be done by specifying an event preceded by the
symbol ‘@".

@(negedge clk) : executes the following block at the negative edge of the reg (variable)
clk.

@(posedge clk) : executes the following block at the positive edge of the reg (variable)
clk. @clk : executes the following block at both the edges of clk.

e The events can be changes in reg, integer, real or a signal on a net. These should
be declared beforehand.

e No algebra or logic operation is permitted as an event. The OR'ing signifies
—execute the block if any one of the events takes place.

e The positive transition for a reg type single bit variable is a change from 0 to1.
e Foralogic variable it is a transition from false to true.
The posedge transition for a signal on a net can be of three different types:

e (tol
e Otoxorz
e Xorzto1l

The negedge transition for a signal on a net can be of three different types:-

e 1to0
e Jtoxorz
e XorztoO

If the event specified is in terms of a multibit reg, only its least significant bit is
considered for the transition. Changes in the other bits are ignored. The event-based
flagging-off of a block is applicable only to the always block. According to the recent
version of the LRM, the comma operator (,) plays the same role as the keyword or. The
two can be used interchangeably or in a mixed form. Thus the following are identical: @
(@orborc)@ (aorb,c)@(a,b,c) @ (a,borc)

EXAMPLES
Versatile Counter

module counterup(a,clk,N);
input clk;
input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a=4'b0000;

always@(negedge clk) a=(a==N)?4'b0000:a+1'b1;
endmodule

TEST_BENCH

module tst_counterup;

reg clk;

reg[3:0]N;

wire[3:0]a;

counterup c1(a,clk,N);

initial

begin

clk = 0;

N = 4b1011;

end

always #2 clk=~clk;

initial Smonitor(Stime,"a=%b,clk=%b,N=%b",a,clk,N);

endmodule

module counterdn(a,clk,N);

input clk;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a =4'b0000;

always@(negedge clk) a=(a==4'b0000)?N:a-1'b1;

endmodule

module updcounter(a,clk,N,u_d);
input clk,u_d;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a =4'b0000;

always@(negedge clk) a = (u_d) ? ((@==N) ? 4'b0000 : a + 1'b1) : ((a==4'b0000) ? N : a -
1'b1); endmodule

module clrupdcou(a,clr,clk,N,u_d);
input clr,clk,u_d;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a =4'b0000;

always@(negedge clk or posedge clr) a = (clr) 2 4'h0 : ((u_d) ? ((a==N) ? 4b0000 : a+1'b1)
((a == 4'b0000) ? N : a- 1'b1));

endmodule

Example

Shift Register module shifrlter(a,clk,r_I);

input clk,r_l;

output [7:0]a;

reg[7:0]a;

initial a= 8'h01;

always@(negedge clk) begin a = (r_l) ? (a>>1'b1) : (a<<1'b1);
end

endmodule

ASSIGNMENTS WITH DELAYS

The delay refers to the specific activity it qualifies. A variety of possibilities of specifying
delays to assignments exist. Consider the assignment always #3 b = a; Simulator
encounters this at zero time and posts the entire activity to be done 3 ns later the
assignment is scheduled to be repeated every 3 ns, irrespective of whether a changes in
the Meantime

Intra-assignment Delays

In contrast, the intra-assignment| delay carries out the assignment in two parts

A = # dl expression; Here the expression is scheduled to be evaluated as soon as it is
encountered. However, the result of the evaluation is assigned to the right-hand side
quantity a after a delay specified by dl. dl can be an integer or a constant expression

Zero Delay

A delay of 0 ns does not really cause any delay. However, it ensures that the assignment
following is executed last in the concerned time slot. Often it is used to avoid indecision
in the precedence of execution of assignments

wait CONSTRUCT

The wait construct makes the simulator wait for the specified expression to be true
before proceeding with the following assignment or group of assignments.

lts syntax has the form wait (alpha) assignment1;

alpha can be a variable, the value on a net, or an expression involving them. If alpha is an
expression, it is evaluated; if true, assignment1 is carried out. One can also have a group
of assignments within a block in place of assignment1.

The activity is level-sensitive in nature, in contrast to the edge-sensitive nature of event
specified through @.

Specifically the procedural assignment @clk a = b;

assigns the value of b to a when clk changes; if the value of b changes when clk is steady,
the value of a remains unaltered.

wait(clk) #2 a = b; the simulator waits for the clock to be high and then assigns b to a
with a delay of 2 ns. The assignment will be refreshed as long as the clk remains high

DESIGNS AT BEHAVIORAL LEVEL
module aoibeh(o,a,b);

output o;

input[1:0]a,b;

reg o,al,b1,01;

always@(a[1] or a[0]or b[1]or b[0])
begin

a1=&a;

b1=&b;

o1=a1l||b1;

:~o‘];

end
endmodule

module aoibeh1(0,a,b);
output o;
input[1:0]a,b;

reg o;
always@(a[1]ora[0]or b[1]orb[0]) o=~((&a)||(&b));

endmodule

BLOCKING AND NONBLOCKING ASSIGNMENTS

These are executed sequentially — that is, one statement is executed, and only then the
following one is executed. Such assignments block the execution of the following lot of
assignments at any time step. Hence they are called —blocking assignments|. A facility
called the —nonblocking assignment is available for such situations. The symbol —<=|
signifies a non-blocking assignment. The same symbol signifies the —less than or equal
to|| operator in the context of an operation. The context decides the role of the symbol.
The main characteristic of a nonblocking assignment is that its execution is concurrent
with that of the following assignment or activity.

Nonblocking Assignments and Delays

Delays — of the assignment type and the intra-assignment type — can be associated with
nonblocking assignments also. The principle of their operation is similar to that with
blocking assignments.

THE case STATEMENT

The case statement is an elegant and simple construct for multiple branching in a
module. The keywords case, endcase, and default are associated with thecase construct.
Format of the case construct is

Case (expression)

Ref1 : statementT,

Ref2 : statement2;

Ref3 : statement3;

default: statementd;

endcase

If the evaluated value matches ref1, statement1 is executed; and the simulator exits the
block; Else expression is compared with ref2 and in case of a match, statement2 is
executed, and so on. If none of the ref1, ref2, etc., matches the value of expression, the
default statement is executed. A statement or a group of statements is executed if and
only if there is an exact — bit by bit — match between the evaluated expression and the
specified ref1, ref2, etc.

For any of the matches, one can have a block of statements defined for execution. The

block should appear within the begin-end construct.

There can be only one default statement or default block. It can appearanywhere in the
case statement.

One can have multiple signal combination values specified for the same statement for
execution. Commas separate all of them.
module dec2_4beh(o,i);

output[3:0]o;
input[1:0li;
reg[3:0]o;
always@(i)
begin

case(i)
2'b00:0=4'h0;
2'b01:0=4'h1;
2'b10:0=4'h2;
2'b11:0=4'h4;
default: begin
Sdisplay ("error");
0=4'h0;

end

endcase

end
endmodule

Casex and Casez

The case statement executes a multiway branching where every bit of the case
expression contributes to the branching decision. The statement has two variants where
some of the bits of the case expression can be selectively treated as don‘t cares — that is,
ignored.

Casez allows z to be treated as a don't care.

?character also can be used in place of z.

casex treats x or z as a don't care

module pri_enc(a,b);

output[1:0]a;

input[3:0]b;

reg[1:0]a;

always@(b)

casez(b)
4'bzzz1:a=2'b00;
4'bzz10:a=2'b01;
4'bz100:a=2'b10;
4'b1000:a=2'b11;
Endcase
endmodule
SIMULATION FLOW
Verilog has to be an inherently parallel processing language. The fact that all the
elements of a digital circuit (or any electronic circuit for that matter) function and interact
continuously conforming to their interconnections demands parallel processing. In
Verilog theparallel processing is structured through the following [IEEE]: Simulation time:
Simulation is carried out in simulation time. The simulator functions with simulation time
advancing in (equal) discrete steps.

At every simulation step a number of active events are sequentially carriedout.

The simulator maintains an event queue — called the —Stratified Event Queue| with an
active segment at its top. The top most event in the active segment of the queue is taken
up for execution next.

The active event can be of an update type or evaluation type. The evaluation event can
be for evaluation of variables, values on nets, expressions, etc. Refreshing the queue and
rearranging it constitutes the update event.

Any updating can call for a subsequent evaluation and vice versa.

Only after all the active events in a time step are executed, the simulation advances to
the next time step.

Completion of the sequence of operations above at any time step signifies the parallel
nature of the HDL. A number of active events can be present for execution at any
simulation time step; all may vie for —attention.| Amongst these, an event specified at #0
time is scheduled for execution at the end
Stratified Event Queue
The events being carried out at any instant give rise to other events — inherent in the
execution process. All such events can be grouped into the following 5 types:

Active events — explained above.

Inactive events — The inactive events are the events lined up for execution immediately
after the execution of the active events. Events specified with zero delay are all inactive
events.

Blocking Assignment Events — Operations and processes carried out at previous time
steps with results to be updated at the current time step are of this category.

Monitor Events — The Monitor events at the current time step — Smonitor and Sstrobe -
are to be processed after the processing of the active events, inactive events, and
nonblocking assignment events.

Future events — Events scheduled to occur at some future simulation time are the
future events.

The simulation process conforming to the stratified event queue is shown in flowchart
form in Figure

3

end of

simulation

activaie all
inactive events

¥
©

activate them h]

advan o simmilation
activate them time

¥ I activale all inactive
e evenits at the next
d :
Il.___.-" Lime shep N
o :fh-\
il
* gvaluate the procs s * update
* add update events to * add evaluation events
thee @went qusse to the event qusese
x ¥
(a8 b i
e lk-_/

if AND if-else CONSTRUCTS

The if construct checks a specific condition and decides execution based on the result.
the structure of a segment of a module with an if statement. After execution of
assignment1, the condition specified is checked. If it is satisfied, assignment2 is
executed; if not, it is skipped. In either case the execution continues through assignments3,
assignment4, etc.

Execution of assignment2 alone is dependent on the condition.
The rest of the sequence remains. . . .

assignment1;

if (condition)

assignment2;

assignment3;

assignment4;

Use of the if—else construct
... assignmentT;

if(condition)

begin // Alternative 1
assignment2;
assignments3;

end

else

begin //alternative 2
assignment4;
assignment5;

end

assignmenteo;

After the execution of assignment1, if the condition is satisfied, alternativel is followed
and assignment2 and assignment3 are executed. Assignment4 and assignment 5 are
skipped and execution proceeds with assignment6.

If the condition is not satisfied, assignment2 and assignment3 are skipped and
assignment4 and assignment5 are executed. Then execution continues with

assignmentb6
module demux(a,b,s);
output [3:0]q;
input b;
input[1:0]s;
reg[3:0la;
always@(b or s)
begin
if(s==2'b00)
begin

a[2'b0]=b;
a[3:1]=3'bZ7Z;
end

else if(s==2'b01)

begin a[2'd1]=b;
{a[3],a[2],a[0]}=3'bZZZ;
end

else if(s==2'b10)

begin a[2'd2]=b;
{a[3],a[1],a[0]}=3'bZZZ;
end

else begin a[2'd3]=b;
a[2:0]=3'bzZZ;

end

end

endmodule

assign—deassign CONSTRUCT

The assign — deassign constructs allow continuous assignments within a behavioral
block. always@(posedge clk) a = b; By way of execution, at the positive edge of clk the
value of b is assigned to variable a, and a remains frozen at that value until the next
positive edge of clk. Changes in b in the interval are ignored. Consider the block
always@(posedge clk) assign c = d; Here at the positive edge of clk, c is assigned the
value of d in a continuous manner; subsequent changes in d are directly reflected as
changes in variable c: The assignment here is akin to a direct (one way) electrical
connection to ¢ from d established at the positive edge of clk. Consider an enhanced
version of the above block as

Always Begin @(posedge clk) assign c = d; @(negedge clk) deassign c; end

The above block signifies two activities:

1. At the positive edge of clk, c is assigned the value of d in a continuous manner

2. At the following negative edge of clk, the continuous assignment to c is removed;
subsequent changes to d are not passed on to c; it is as though c is electrically
disconnected from d.

In short, assign allows a variable or a net change in the sensitivity list to mandate a
subsequent continuous assignment within. deassign terminates the assignment done
through the assign-based statement.

module demux1(a0,a1,a2,a3,b,s);

output a0,a1,a2,a3;

input b;

input [1:0]s;

reg a0,a1,a2,a3;

always@(s) if(s==2'b00)

assign {a0,a1,a2,a3}={b,3'0z};

else if(s==2'b01)

assign {a0,a1,a2,a3}={1'bz,b,2'bz},

else if(s==2'b10)

assign {a0,a1,a2,a3}={2'bz,b,1'bz};

else if(s==2'b11)

assign {a0,a1,a2,a3}={3'oz,b};

endmodule

D Flip-Flop through assign — deassign Constructs
module dffassign(q,gb,di,clk,clr,pr);

output q,gb;

input di,clk,clr,pr;

reg q,

assign gb=~q;

always@(clr or pr)

begin

if(clr)

assign g = 1'b0;//asynchronous clear
and if(pr)

assign g = 1'b1;// preset of FF overrides
else
deassign q;// the synchronous behaviour

end

always@(posedge clk) q = di;//synchronous (clocked)value assigned to q

endmodule
repeat CONSTRUCT

The repeat construct is used to repeat a specified block a specified number of times. The
quantity a can be a number or an expression evaluated to a number. As soon as the
repeat statement is encountered, a is evaluated. The following block is executed —a
times. If —a|| evaluates to 0 or x or z, the block is not executed. Structure of a repeat

block. ...

repeat (a)

begin assignment1;
assignment2;

end

.. A module to illustrate the use of the
repeat construct
module trial_8b;
reg[7:0] m[15:0];
integer i;

reg clk;

always begin repeat(8) begin @(negedge clk) m[i]=i*8;

i=i+1;

end

repeat(8)

begin @(negedge clk) i=i-1;

Sdisplay("t=%0d, i=%0d, m[i]=%0d", Stime,i,m[i]);
end

end

initial

begin

clk = initial

begin clk = 1'b0;

i=0; #70 Sstop;

end

always #2 clk=~clk;

endmodule

for LOOP

The for loop in Verilog is quite similar to the for loop in C; the format of the for loop is
for(assignment1; expression; assignment 2) statement; . . . It has four parts; the
sequence of execution is as follows:

1. Execute assignment?1.

2. Evaluate expression.
3. If the expression evaluates to the true state (1), carry out statement. Go to step 5.
4. If expression evaluates to the false state (0), exit the loop.

5. Execute assignment2. Go to step 2.

An adder module using the for loop.
module addfor(s,co,a,b,cin,en);
output[7:0]s;

output co;

input[7:0]a,b;

input en,cin;

reg[8:0]c;

reg co;

reg[7:0]s;

always@(posedge en) begin c[0] =cin;
for(i=0;i<=7;i=i+1)

begin {c[i+1],s[il}=(alil+blil+c[i]);

end

co=c[8];

end

endmodule

THE disable CONSTRUCT

There can be situations where one has to break out of a block or loop. The disable
statement terminates a named block or task. Control is transferred to the statement
immediately following the block. Conditional termination of a loop, interrupt servicing,
etc., are typical contexts for its use. Often the disabling is carried out from within the
block itself. The disable construct is functionally similar to the breakin C OR gate module
to demonstrate the use of the

disable construct

module or_gate(b,a,en);

input [3:0]a;
input en;
output b;
reg b;
integer i;
always@(posedge en)
begin:
OR_gate b=1'b0;
for(i=0;i<=3;i=i+1)
if(ali]==1b1)
begin b=1'b1;
disable OR_gate;
end
end
endmodule
The disable statement has to have a block (or task) identifier tagged to it in this respect it
differs from —break] in C.
Once encountered, it terminates execution of the block; the following statements within
the block are not executed.

Typically it can be used to handle exceptions to regularly assigned activities for
example, Interrupt, Hold, Reset, etc.

while LOOP

The format for the while loop is shown is while (expression) statement ;

The Boolean expression is evaluated. If it is true, the statement (or block of statements)

is executed and expression evaluated and checked. If the expression evaluates to false,

the loop is terminated and the following statement is taken for execution.

If the expression evaluates to true, execution of statement (block of statements) is
repeated. Thus the loop is terminated and broken only if the expression evaluates to false.
To generates a pulse of definite width

module while2(b,n,en,clk);

input[7:0]n;

input clk,en;

output b;

reg[7:0]a;

reg b;

always@(posedge en)

begin a=n;

while(|a)

begin b=1'b1;

@(posedge clk) a=a-1'bT;

end

b=1'b0;

end

initial b=1'b0;

endmodule

forever LOOP

Repeated execution of a block in an endless manner is best done with the forever loop
(compare with repeat where the repetition is for a fixed number of times).
module to generate a clock waveform using the forever construct
module clk;

reg clk, en;

always @(posedge en)

forever#2 clk=~clk;

initial

begin

clk=1'b0;

en=1'b0;

#1 clk=1'b1;

#4 en=1'b1;

#30 Sstop;

end

initial Smonitor("clk=%b, t=%0d, en=%b ", clk,Stime,en);

endmodule

PARALLEL BLOCKS

All the procedural assignments within a begin—end block are executed sequentially. The
fork—join block is an alternate one where all the assignments are carried out concurrently.
One can use a fork-join block within a begin—end block or vice versa.

Force—-release CONSTRUCT
When debugging a design with a number of instantiations, one may be stuck with an
unexpected behavior in a localized area. Tracing the paths of individual signals and
debugging the design may prove to be too tedious or difficult. In such cases suspect
blocks may be isolated, tested, and debugged and status quo ante established. The
force—release construct is for such a localized isolation for a limited period. force a =
1'b0; forces the variable a to take the value 0. force b = c&d; forces the variable b to the
value obtained by evaluating the expression c&d. The force-release construct is similar
to the assign—deassign construct. The latter construct is for conditional assignment in a
design description. The force-release construct is for —short time| assignments in a
test-bench. Synthesis tools will not support the force-release constructs.

The force-release construct is equally valid for net-type variables and reg-type
variables. The net—type variables revert to their normal values on release. With reg-type
variables the value forced remains until another assignment to the reg.

The variable, on which the values are forced during testing, must be properly
dereferenced.

In the illustration above, each variable was forced one at a time. It was done only to
simplify the illustration sequence and focus attention on the possible use of the
construct. In practice, different variables can be forced together before the special debug
sequence. Their release too can be together.

OR gate module and its test bench to illustrate the use of force-release construct

module or_fr_rl(a,b,c);

input b,c;

output a;

wire a,b,c;

assign a= bjc;

initial

begin

#1 Sdisplay("display:time=%0d, b=%b, c=%b, a=%b", Stime,b,c,a);
#6 force b=1'b1;

#1 Sdisplay("display:time=%0d, b=%b, c=%b, a=%b", Stime,b,c,a);
#6 release b;

#1 Sdisplay("display:time=%0d, b=%b, c=%b, a=%b", Stime,b,c,a);

End

endmodule

EVENT

The keyword event allows an abstract event to be declared. The event is not a data type
with any specific values; it is not a variable (reg) or a net. It signifies a change that can be
used as a trigger to communicate between modules or to synchronize events in different
modules. . ..

event change; . ..

always

change; . ..
.always@change . .

. In the course of execution of an always block, the event is triggered. The operator
signifies the triggering. Subsequently, another activity can be started in the module by the
event change. The always@(change) block activates this. The event change can be used
in other modules also by proper dereferencing; with such usage an activity in a module
can be synchronized to an event in another module. The event construct is quite useful,
especially in the early stages of a design. It can be used to establish the functionality of a
design at the behavioral level; it allows communication amongst different instantiated
modules without associated inputs or outputs. A module to illustrate the event construct:

A serial data receiver
module rec(a,ddi,clk);
output[8:1]a;

input ddi,clk;

reg[8:1] a;

integer j,jj;

event buf_ful;

always

for (j=0;j<20;j=j+1)
begin

#0 Jj=0;

repeat(8)@(negedge clk)
begin jj=jj+1;

afjjl=ddi;
//8display("b=%b"a[jj]);

end
#0 ->buf_ful;
end

endmodule

